Monday, January 28, 2013

Turbidites

Turbidites
Turbidites provide a good summary of the ideas we have been talking about, e.g. facies and sedimentary structures related to flows. Turbidites are deposited from slurries of sediment and water in any standing body of water (lakes, oceans).

1) Turbidity flows start with slope failure in soft sediment. Slopes become oversteepened where sedimentation rates are very high, such at the mouths of rivers. Because flow speeds are very low in standing water, the sediment does not get washed downslope. Rather, it builds up until there is a subaqueous slope failure. Earthquakes can trigger these slides, too.

2) Sediment and water mix creating a “fluid” that is denser than the surrounding water because of the entrained sediment. Thus, it flows downhill even if the slope is very low (1°).

3) The base of the flow is commonly erosional on steep slopes, so more sediment is entrained in the flow.

4) Enough sediment is entrained that erosion stops. Deposition begins as the slope gets shallower or the flow starts to slow down. Initially, the coarsest grains are deposited (remember the Hjulstrom diagram) and then finer grains, so the sediment is “graded”. However, the sediment is usually poorly sorted because the flow is a slurry of water and sediment so hydraulic sorting is reduced. (Facies = Bouma a)

5) Sediment concentration decreases with deposition, so one gets more hydraulic sorting. The flow is very fast so the sediment has upper planar lamination. (Facies = Bouma b)

6) As the flow slows more, grain size decreases and ripples start to form. Dunes do not usually form for two reasons: a) often only fine sand and finer grains are left in the flow by this point; and b) dunes do not have time to develop. (Facies = Bouma c)

7) Eventually, the flow slows to the point that bedload transport stops and deposition is mostly settling of silt and then clay. The progressive settling of coarser and then finer grains produces a faint lamination, but it is not as strong as the planar laminations in Bouma b. (Facies = Bouma d)

8) Mud settles out producing shale. This can look identical to background settling of clays brought into the lake/ocean as suspended sediment. (Facies = Bouma e)

Bouma divisions a-d can take hours or a day or so to be deposited. However, division e, which is usually the thinnest, commonly accumulates over months or longer (e.g. hundreds of years) depending on how frequent turbidites are in the area.

Watch these movies of turbidites in flumes:
http://faculty.gg.uwyo.edu/heller/SedMovs/middletonturb.htm
http://faculty.gg.uwyo.edu/heller/SedMovs/Turbidity%20ignition.html

Changes in Character Downslope - The parts of turbidites that are deposited change downslope and usually only a few of the subdivisions are preserved. In the most proximal (upslope) environments, divisions a and b are most common. In the more distal areas, all of the coarser sediment has already been deposited upstream, so divisions d and e are most common. Generally, there are also channels which fan out producing variations in rock types that change in space and through time.

Turbidite Facies Models - Over the decades, sedimentologists have described and interpreted sedimentary rocks and defined generalized facies and facies associations that are characteristic of different depositional environments. These generalized facies and associations are called Facies Models. Each depositional environment or system has its own facies model. This is a VERY powerful tool for interpreting ancient environments.  See my video summary:  http://www.youtube.com/watch?v=G05juwK2OTI

A nice, hour long lecture on turbidites in the Monterrey Bay canyon, CA, can be found at: http://online.wr.usgs.gov/calendar/2010/jun10.html  The actual lecture starts about 5 minutes into the video.

Extra on Turbidites - Turbidite facies analysis and the resulting facies model led to the discovery of a new process. Sedimentologists had characterized turbidites all over the world. They all had the same flow characteristics consisting of a very strong erosive flow, deposition of a normally graded bed which was massive, followed by upper plane bedding, rippled finer sands, coarsely laminated silts, then shales. Comparisons with known flows showed that this sequence of deposits must come from a strong initial flow that slowed through time to still water. And this repeated again and again. The associated facies and the succession of different facies in these sequences suggested that the deposits had to be in deep water. For example, the fossils were all characteristic of deep water, shales were abundant and only settle from still water (shallow or deep), and they were sometimes associated with deep water storm deposits. Thus, the sedimentologists proposed slope failure and turbid currents flowing downslope and called them turbidity currents. A process like this had not been observed in modern depositional environments, so the idea was controversial. Many geologists did not believe that you could generate strong enough currents underwater to get those flow characteristics. Eventually in 1964, two geologists Heezen and Drake realized that an event in 1929 provided strong evidence for turbidity currents. In 1929, without satellites, under water telegraph cables were strung from Newfoundland to Europe. In November, about 30 cables broke in order from farthest north and shallowest to farther south and deeper water. At the time, people did not know why they broke, but Heezen and Drake suggested that a turbidity current was triggered by an earthquake and the cables broke as the turbidity current passed over them (they are strong flows!). Because they were continuously used for communication, the time each cable broke was very well known. Heezen and Drake calculated that the front of the flow traveled at 250 km/h (36,000 cm/s) when it first formed and then slowed to around 20 km/h (7000 cm/s) by the time the last cables broke 500 km from the source. This was a fast, strong flow and may be typical of turbidites. These speeds are above the upper end of the Hjulstrom diagram and are very erosive. It is only after the turbidite slows down even more that you get deposition. The characteristics of the flow seen by the breaking cables fit the flow characteristics proposed by the sedimentologists, and now turbidity currents and the facies model developed for turbidites are widely accepted and often treated as an ideal example of rocks that closely reflect flow characteristics. Turbidites and their interpretation are almost an ideal example of a good Facies Model.

Extra on Dense Sediment Flows
Sometimes with slope failures on land or under water, much more sediment can be put into motion than the flow would normally erode. Depending on the amount of water mixed with the sediment, the flow characteristics are different. When abundant water is present, the sediment can form a thick slurry with a higher density than sediment-free water, commonly leading to a higher Re and more turbulent flow (Re=u*l*r/µ). Also, collisions between grains become extremely important. Both of these tend to keep the sediment moving. Grain-to-grain collisions also have an important effect on grain sorting. The collisions tend to make sorting much less efficient and the sediment that gets deposited tends to consist of whichever grains make it to the base of the flow and are not kicked back up again. Usually, the largest grains are part of this first deposit because they weigh more, but small grains are also present. As the amount of sediment decreases, the flow becomes more like typical water flows. Turbidites are subaqueous flows that start out with a very high sediment load and decrease in time to more normal flows. They have characteristic sedimentary structures associated with them that reflect these changes.

If there is very little water associated with a clay-rich sediment flow, the flow can be very viscous due to the charge attraction among clay particles. The high viscosity makes the flow laminar (Re=u*l*r/µ). Debris flows with lots of cohesive mud are like this. In laminar flows, there is no mixing of the water or grains (or ice) and there is no sorting of grain sizes. Thus, the sediment remains mixed up with large grains, sometimes boulders, “floating” in mud. They flow down hill pulled by gravity until the flow seizes up and stops. This can be due to too low a slope or loss of water. Underwater debris flows can also be diluted by water that gets incorporated at the edges of the flow and become less viscous and more turbulent.

There also are dry sediment flows in which air is present between grains. For example, rock avalanches and some pyroclastic flows from volcanoes lack water. For these to move significant distances, large amounts of energy from either gravity or explosions are necessary to keep the sediment in motion.

No comments:

Post a Comment