Wednesday, January 30, 2013

Weathering

Origins of Sediment
Sediment comes from the break down of rocks into smaller, transportable components. This occurs via two processes: physical weathering and chemical weathering. Physical weathering consists of breaking apart rocks and crystals. The results of physical weathering are smaller components of the same material that is being weathered. There is no change in composition. In contrast, chemical weathering consists of changing the composition of at least some components of the rock that is weathering. The sediment does not have the same composition as the original rock.

Physical Weathering:
Physical weathering occurs via:

1) Freeze-thaw action. Water in cracks expands when it freezes, putting force on the cracks. The cracks grow, and eventually crystals and pieces of rock break off into smaller components. Obviously, this process is most important in environments where temperatures cycle across the freezing point of water.

2) Salt crystal growth. When water evaporates, salts precipitate. If this happens in fractures in rock, the growth of the salt crystals can put pressure on the cracks, causing them to grow. This process is most important near oceans where rocks are exposed to lots of salt water spray and in arid environments where water evaporates rapidly.

3) Temperature changes. Minerals contract and expand as temperature decreases and increases, respectively, and different parts of the rock are heated different amounts. Those in direct sunlight expand as they heat, whereas the interiors and shaded areas do not. Differential expansion and contraction produces stresses which can result in cracks and physical weathering. This process is most important when temperatures change dramatically from day to night, a characteristic of many desert environments.

Physical weathering tends to produce mostly sand-sized sediment and larger grains because most of the fracturing occurs along mineral boundaries. Physical weathering of fine grained or finely crystalline rock can produce abundant very fine grains, but most of the sediment from these rock types consists of rock fragments (called lithic clasts).

Image of physically weathered rocks in New Zealand (from Lab 1)
Chemical Weathering:

Chemical weathering occurs via:

1) Dissolution of minerals. Some minerals like halite and other evaporites dissolve very easily in water. Other minerals, particularly silicates, do not dissolve easily. Carbonates are in between and dissolve in acidic waters. (Rain water has a pH of ~5.7 due to dissolved CO2, even without “acid rain” pollution.) The results of dissolution are ions in water that are transported downstream. Ions are not deposited until the water evaporates, they react with other minerals, or organisms use them to make shells. Often, only part of a rock dissolves, leaving sediment that can be transported by wind, water, etc.

2) Alteration of minerals. Silicate minerals do not dissolve very easily, but they do react with water to form new minerals. Feldspars react with water to form clay minerals and ions, olivine reacts with water and O2 to form oxides, clay minerals and ions, pyrite reacts with water and O2 to form oxides and sulfate ions. Iron oxides, such as hematite, are commonly red, giving weathered rocks a rusty hue. Alteration of minerals is one of the main sources of clay minerals and mud-sized grains.


Images of chemically weathered rocks in New Zealand. These outcrop originally had the same composition as the rock shown in the previous photograph, but have been exposed to much more water as well as plant-assisted soil processes.

Mineralogy of Weathered Rocks
Sediments that have been subjected primarily to physical weathering have a mineralogy that is similar to that of the parent rock. If the sediments have been subject to extensive chemical weathering, it is much harder to characterize the source rocks because the composition has changed extensively. Overall, the composition of the resulting sediment depends on the mineralogy of the rock, how it is transported, and the weathering environment.

Some minerals alter more quickly than others. Quartz is difficult to dissolve and is hard, so it commonly lasts through both chemical and physical weathering and is the most common mineral in sand on Earth. In contrast, minerals like Ca-feldspar and olivine react to form new minerals quickly. They are substantially less common in sediments. Thus, mafic rocks (which contain Ca-feldspar, olivine and pyroxenes) tend to alter to clay minerals very easily and produce little sand and abundant mud. In contrast, granites (quartz, K-feldspar, Na-feldspar, mica) contains minerals that react more slowly and tend to produce sand-sized grains, especially quartz.

The following list includes minerals from most reactive (rarely found in sediments) to least reactive (common in sediments): Olivine, Ca-feldspar, Pyroxene, Amphibole, Na-feldspar, Biotite, K-feldspar, Muscovite, and Quartz

The other main control on sediment mineralogy is the hardness of the grains. During transport, grains hit each other. Softer grains tend to be damaged when they collide with harder grains, and this damage can cause them to break into smaller grains. Thus, soft grains become smaller very quickly when they are transported with hard grains. Quartz is the most common mineral in sandstones because it is hard and unreactive. Clay minerals are also very common because they are too small to damage much during collisions and they are the product of the alteration of other minerals.

Controls on Weathering
The extent and style of weathering is mainly controlled by climate. Water is extremely important, even for physical weathering. The more water present, the faster weathering occurs. Temperature is also important, as discussed for physical weathering. Warmer temperatures also promote faster reactions, so chemical weathering is more effective in warm climates. Thus, warm, humid climates tend to have the most rapid weathering (and poor outcrop). Finally, vegetation has a strong influence on weathering. Plants tend to increase the extent of chemical weathering by producing organic acids that help break down rocks into soil through both dissolution and alteration. They also help soil retain moisture, increasing the availability of water for weathering, and their roots can help widen cracks.

Mars
Some of the big questions we have about Mars right now are about the extent and timing of chemical weathering. There is no vegetation. Right now, the climate is very cold and very dry, so the rate of chemical weathering now is extremely low. However, most of the rocks on the surface of Mars (that we have characterized) are basalts, which have glass and mafic minerals that should alter “quickly” if they are in contact with water. What do you expect a chemically weathered basalt to produce? What should we look for as evidence of past chemical weathering on Mars? How might products from basalt weathering look different if one looks at the weathered basalt itself or at sediment that was eroded from weathered basalt? (Basalt is mostly plagioclase (calcium feldspar) and pyroxene, with or without olivine, and has less than 20 percent quartz.)

No comments:

Post a Comment